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It was shown in [1] that strong discontinuities different from the elastic shock 

waves may form in elastic-plastic media, and this fact leads to the necessity 
of formulating additional conditions at the discontinuities. It would therefore be 

desirable to be able to single out those media for which solutions could be con - 

strutted without the need of using such discontinuities. 
In PZ] it was shown that with the Mises yield condition and the isotropic work- 

hardening property, the plane simple waves do not break up in the presence of 

-4 I 
two velocity components when certain restrictions 

,: 

G, 

are imposed on the initial state of stress. This is 
valid for those media which, on a simple comp- 

ression test, produce a stress-strain curve convex 
in the direction of the stress axis (Fig. 1). Below 

we generalize this assertion to the case of arbitrary 
plane simple waves in the same medium. A sol- 

1 -Et ution of the problem of collapse of an arbitrary 

Fig. 1. 
discontinuity is constructed under stricter condi- 
tions. In this case the only discontinuities are the 

elastic shock waves, the contact type discontinuities and the discontinuities rep- 

resenting the limiting case of simple waves propagating at constant speed. 

1. Using the framework of the geometrically linear theory, let us consider the motion 
of an elastic-plastic medium, the free energy of which is given by F = f’I(Eiie) + 
+ Fz (T) Under the usual assumptions [3], the temperature T does not enter the stress- 

strain equations. Consequently, for such a medium the mechanical problem can be sol- 
ved separately from the heat problem. In particular, the condition of conservation of 

energy at the discontinuity does not impose any restrictions on the velocity and the 

stresses. It merely represents a boundary condition of the problem on the temperature 

distribution. 
The equation of the stress surface written in the Mises form is as follows 

~- (1.1) 
$2 s i/e 3ij’oii’ zz k2 (x) (do = Si;d&i;?f or dx = fde$’ dsi,in) 

Here o<j’ is the deviator of the stress tensor and k2 (x) is a prescribed, monotonously 
increasing function. The relations within the parentheses are equivalent to each other 
for the condition (1.1) in the presence of an associated law. 

The following rule associated with (1.1) is adopted for the plastic deformation incre- 
ments 
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(-jQP = fjkc$j , dF. > 0 (1.2) 

and the Hooke’s law for the other deformations, Finally, for the total deformations we 
have 

_ K avh: = ap (P = - 1/3%) 

q~+f)_+$tii:~.i;.+&~ (p, K = const) (1.3) 

From (I. 1) and (1.2) we have o?~ = 2k2 (#A. Thus 2 = x (h) and we can write (1.1) 

as h = il, (J) where (in (J) is a monotonously increasing function with the load con- 
dition 

when h=@(J), dJ>O 

when dJ < 0 and also when 4, Q < h 
(1.4) 

Below we shall study plane waves propagating in a constant state, for (1.3h (1.4) 

and the equations of motion 

avl a611 av, aaH f%s 8313 
POX== FOat--X' PO at = ax 

In the case of a one-dimensionai motion it follows from (1.3) 

0.5) 

When the state of stress ahead of the wave is described by ass - o,, = 0 and $3 = 
= 0 (the last equation can be obtained by rotating the coordinate system about the i)~ - 
axis), we have ~+a - 0,s G 0 and azs G O.The case of crsa - 03a = 0 , with the 

additional assumption of us = 0 and ols = 0 was studied in @]. Below we shall in- 
vestigate the case u3 j: 0 and ora # 0,and the condition uz2 - ~1~~ = 0 will also be 

subsequently removed. 
Performing the change of variables 

-q (G1l + p) = J cm 0 (0 < 0 < 3%) 

G 12 = Jsin 8 cos cp, o13 = J sin 0 sin !p (0 < (0 < 2~) (1.7) 

we obtain the system (1.3) - (1.5) in the plastic region in the form 
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We shall take J as the simple wave parameter in (1. 8), i. e. we shall consider the sol- 
utions of (1.8) of the form u = u [J (z, t)], where u 5 (Up, ~2, ~9, J, P, 0, 9). 
The system (1.8) which has the form A (u) (3~ / at -j- B (u) du / dz = 0, can be 
reduced to the following system of ordinary differential equations 

t- C (u, A (u) + B (u)l du / dJ = 0 (1.3 

where C (u) is the root of the characteristic equation det (- CA + B) = () 
Investigation of the characteristic equation can be simplified by utilizing the Mandel 

theorem [4] 
o~c,~~cc,~,(C,~~C~~~cCQ~~cC3~ (,l.10) 

where Ci” and CiP denote, respectively, the elastic and plastic characteristic velocip 
ties. Since .-- 

C,” = cze=l/p lpo 

we also have 

C,” = lf!-#o 

whereupon C,” and C3P can be found from the characteristic equation 

ua* _t pa2 + r = 0 (CG s POP) 

.=J$+& p=-J’$(K-+p+$sinSf3) -&--+- 

y = pKJ f$ co9 0 -I- -&+ fK (l.llj 

The simple waves break up if dC / dt= (dC / dJ) (dJ / at) > 0 or if dC / dJ 
> 0,since in the plastic region dJ / dt > 0. If dC / dJ ( 0, the simple wave be- 

comes flatter. Under d / dJ we understand a derivative given by (1.9). The expressions 
dC/dJ and da2/dJ have the same sign for the waves moving to the right. Differentia- 
ting (l.ll),we fihd that the sign of da2/dJ coincides with the sign of S 3 a4 daldJ+ 
+ a2 dp / dJ+ dy / dJ for the waves moving at velocity C,P (slow), and is opposite 

for the waves moving at velocity C,” (fast) 

~=~(J~)D_-~KIL(~I.-~‘~ J~$sinOcosO (1.12) 
I 

D 3 a4 - (K + p + ljg p sin2 0) a2 + Kp cos20 

In the following we assume that d (Jd (1) / dJ) / dJ > 0. This inequality represents 
the condition of convexity of the stress-strain curve for the simple compression test (Fig. 1). 
We shall show helow that in this case no strong discontinuities are formed; when 
d (J d Q, /dJ) I dJ < 0 the discontinuities obviously appear even when the motion has 
a single (longitudinal) velocity component. 

From (1.9) we find 018 

( 

2-K) cl@ 
- =ctge f--K~;f’/3__a” dJ 
dJ ) 

Substituting a2 from (1.11) and using (1.10) qe find that the signs of &I / dJ and tg 0 
are opposite for the fast waves, and equal for the slow waves. Further, by (1.11) we 
have 
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from where, in accordance with (l.lO), it follows that D > 0 for the fast waves and 
D < 0 for the slow waves. Using (1.12) and the sign estimates obtained above we can 

finally establish that dC / dJ & 0 for both slow and fast plastic waves. 
Thus, no shock waves form from the simple plastic waves. The waves which propagate 

at velocity c,p = T/P /pCJ 

without distorting their form can be regarded, in the limit (e, g, in a self-similar solut- 
ion), as shock waves, For these waves the problem of determining the relations at the 
discontinuity is simple: all quantities vary as those in a simple wave. It should, however 

be noted that the result obtained follows from imposing arbitrarily strong restrictions. 

Break up of simple plastic waves is possible even within the framework of the geometri- 

cally linear theory with the effects of heat disregarded Cl]. In this case additional con- 
ditions at the discontinuities can, and must be obtained by considering the structure of 

the discontinui~ [5]. 
Finally, the condition Ua2 - ~a, = 0 should be disposed of. If we have &a - Uaa = 

= YO ahead of the wave, then frorh (1.6) it follows that 422 - (faa = ‘r’a e-2cLA, and 
the equation of the stress surface 

Ja = 3/a (~11 -!- 14” + ~12~ + ~1st~ + V4 (02~ - ~2~)~ = k2 [x, (h)] or h = @ (J) 

can be rewritten in the Term 
(1.13) 

l’d f s/4 (all + p)” + o1a2 -/- 4,a2 = h2 [x (A)] - 1/4~02 e-c@ or h = Y(I) (1.14) 

Since ozz-6a3 does not enter the remaining equations of the system (1.3) - (1.5) the 

problem can be studied for a medium in which uz2 - osa = 0, while the equation of 

the stress surface has the form not of (1.13) but of (1.14). It remains to show that the 

relations d@ / dJ > 0 and d (J diI, / dJ) /dJ > 0 for (1.13) imply analogous relations 
dY / dl > 0 and d (1 dY / dl) / IEI > 0 for (1.14). The first of them is obvious, and 

the validity of the second one can be confirmed by differentiating (1.13) and (1.14) twice 

with respect to J and f.respectively,and using the inequality 

In particular, for ideally plastic media (ka = con&) the problem with u22 - oaa=& 
# 0 is equivalent to that of a motion with 622 - Qaa = 0 for a medium with restricted 
work-hardening property Ia = k2 - tip yes e-&h. 

Below we study the simple waves for this case in detail and discuss the solution of the 

problem of collapse of a discontinui~. 

2. Let us put in (1.1) ka = const, ua E 0 and $a 3 O,but have U2a - ~a,& 
# 0. Performing the change of variables 

ora = kcos0 (0 < 0 < n) 

G,, + p = --&k sin 0 cos CP, oza - ~38 = 2ksinflsincp (O<p<2n) (2.1) 

we can reduce the system (1. I), (1.3) and (1.5) in the present case, to 
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The characteristic velocities c, and c_ of the system (‘2.2) are given by 

iz4 - az @sins O-j- 4/ 3~sin2cp+4f,~ccosa8cos2cp +K) + 

+psin20 4+sinPq+ K) =0, 
i 

aa z pat? 

and the inequalities hold for these velocities (1.10) 

0sC-~~/y!p,~C+sd(K+41~~)/~~ 

(2.3) 

(2.4) 

Use of 8 as a parameter for the simple wave will be expedient. The system (2.2) can 
then be reduced to the following ordinary differential equations 

@ 
zi= 

(p sin2 0 - a?) sin cp 
a2 sin 0 cos 0 co.9 cp (2.5) 

X dvl dp -...---= v’i? Kk sin 0 da, dva ksin 0 
C d3 d~=--2~~~dB’~=-j%-- 

In order to investigate this system, it is obviously necessary to plot the integral curves 

of (S-5). Various cases are possible. depending upon which interval the quantity K f p 
arrives at, the intervals being (0,1), (1, */a) and (*/a, 00 ) . We shall assume for def- 

initeness that K / p > ‘is. The remaining cases can be treated in exactly the same 

way. The obvious symmetry implies that only the values 0 & 0 < n i 2 and 0 < cp &: 
< Z f 2 and the simple waves propagating to the right need be considered. 

We begin by considering slow simple waves. In this case Eq. (9. 5) has the singular 

points 0 (0, 0) and K (0, n /‘2) Expanding aa (0, cp) near the point 0 gives 

3Kp 
” = 2(3K+2yf 

82 f 620 (82 f cp”) (2.6) 

Then from (8.4) it follows that near 0 

dq 4 p cp 
_=:-?YX-B dO (2.7) 

Point iJ is a node point and the integral curves touch the straight line 8 = 0. Similarly 
we find that the point K is a saddle point. The straight lines 0 = x / 2, ~0 = Oand 

Q, = 3t 2 are IsocIinic of dq / &I = 0 and 0 = 0 is an isoclinic of dq / de = 00. 

Moreover, from (2.3) and (2.4) we find that 

p sin” e > p&-2 (23) 

and, in accordance with (2.5), we have in the region considered-d9 / de > 0. Finally 
the pattern of the integral curves is shown in Fig. ‘L. The arrows show the direction in 

which the vafues change in a simple wave. The direction is determined by the inequality 

drh / at > 0, which reduces by virtue of (a. B) and (2.8) in the region considered to the 
condition 

ae I at < 0 (2.9) 

Let us inspect the changes which the remaining quantities undergo in the slow wave 
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j)@!!= "k$QO 

By (2.9) the variation AU, < 0 and is bounded, since dva / &.i tends according to (2.6) 
to uniq when 0 --t 0. 

Fig. 2. 

Fig. 3, 
As in the previous case, all quantities in the fast wave 

vary monotonously. We find that Av, > 0 and AQ < 0 
while v, and -a,, increase without bounds. Since cp -+ 0 and are bounded as before, 

when 8 --t z f 2, by (2.10) we have 

dvl 2)-&y=- 

The variation Au, > 0 and is bounded, since by (2.6) and 

(~.7)dv~/d0 +Oas 8+-O. 

3) Finally, C&2 = k cos 8 and us1 varies as V, since 
the equation of motion implies that dau / de = - p& 
dv, I de.The integral curve on the cTll, alz -plane has the 

form aa (see Fig.4 below). 
It is clear that the value 1 (I,:! 1 = k can always be attained 

in a slow plastic wave. We also note that the changes under- 

gone by all quantities in such a wave are restricted. 

The fast simple waves are studied in an analogous manner. 

Figure 3 depicts the integral curves on the 8, (p-plane. By 
virtue of t’ne inequality (2.4) we have dq J de < 0 . The 
straight lines 8 = 0, c) = TC / 2 and cp = n / 2 are iso- 
clinic of dq/ d0 = 00 and the line rp = () is an isoclinic 

of dg, I dO = 0. We have the following singularities: 0 
which is a saddle point, dg, J dO = -cp J 0 and M (Z / 

./ 2, 0) which is a node, the integral curves touch the line 
0 -s/2 

dvi m k sin 8 ds, 
dB=--2psintpdB 

c+-_+~=-_.& 

The integral curves on the 011, Cl2 -plane have the form da (Fig. 4). 
As was already shown in Sect 1, neither the fast nor the slow plastic waves do break 

UP. 
It remains to consider the simple plastic waves for which 0 cannot be used as a para- 

meter, i.e. the waves with G,a = con&. Let p (2, t) be the parameter of such a wave. 

The second equation of (1.5) supplies an alternative: dvz / dp = 0 or a~/&? = 0, i.e. 
C = 0. In the first case (1.4) implies $alz. = 0 ($3 dh / ai!). Setting 9 = U we 
obtain a solution which is a constant and 0 L2 = 0 represents the limiting case of a fast 

plastic wave which propagates without distorting its form when oza = baa When c = 0 
3: can be used as a Parameter of a simple wave, The system (1.1). (1.3), (1.5) then 
reduces to 
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1 av2 ---_ 
2 8.x w:a, 9hO0, $(Ql-kP)=:O 

11 @aa - %J = 0, *i* 1% + P)” + G1a2 i- + (52% - 6,$ = k2 

611 = const, VI = const 

and describes two types of solutions. 

1) q # 0; Gij and V, are constant, lOra f = k; liz du,/‘dx = t&, (9 > 0 

Fig. 4. 

and is arbitrary elsewhere). The magni- 
tude of vs in this solution varies arbi- 

trarily and its sign is determined from 

the condition 4 > 0 by the sign of 

%2. 

‘4 9 = 0; ull, q2, q and ~2 

are constant, oar and uss vary arbi- 

trarily. 
In the limit (e. g. in the self-similar 

problem) these solutions reduce to two 
types of discontinuities encountered in 
the theory of quasi-static motions of a 

plastic medium [6]. In the first type of 

discontinuity pure shear occurs on both 
sides and the stresses are continuous, while at the second type discontinuity the velocities 
are continuous and the deformation velocities at both sides cancel each other (* = 0). 

Both discontinuities are of the contact type. 
Other waves such as elastic longitudinal and transverse may appear in the medium under 

consideration in addition to the plastic waves, and their parameters vary in the following, 

well-known manner; for the longitudinal wave we have 

p,-,C,,z = X + $p, Ao,,== - &Au,, 43m = 4333 = 

= --K$hr p,C i, Aulr Asra = 0, Au, = 0 (2.11) 

and for the transverse wave we have 
(2.12) 

poCI= p, A+, = Au,, -= Acr,, -= 0, Au, = 0, Ass12 = - QoCL Au, 

Let us investigate the solution to the problem of collapse of an arbitrary discontinuity. 
Suppose the values of oij and Vi are given at t = 0 as sij+ and Ui+ for IL: > 0 and 
as Sij and t&i for J: ( 0 (uii < ui ).A11 constants entering the equations and initial 
conditions of the problem have the dimension of velocity, density or stress; therefore a 
single dimensionless combination can be formed from x and t (e. g. zi? (K / ~a)-‘~~) 
and the problem is self-similar. 

In the region z > 0 the self-similar solution consists of elastic shock waves and simple 
plastic waves propagating to the right and separating from each other by regions in which 

all parameters have constant values. The order of the wave propagation is determined 

by the inequality (2.4). 
Let the initial state for x > 0 be elastic and represented on the r&, oi2 -plane by 

the point Q(Fig. 4). Points lying on the segment AB can be reached in the 
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longitudinal elastic wave, and the points A and B themselves correspond to the emerg- 
ence at the stress surface. On the 0, cp -plane the points corresponding to A and B are 
symmetric with respect to the straight line r.p = a~ / 2 (cp = 3zz / 2), since by (2.1) and 

(2.11) we have 
k cos 8 (A) = qa (A) = a,, (B) = k cos 0 (B) 

2k sin 6 sin cp (A) = cz2 (A) - c,, (A) = uz2 (B) - us8 (B) = 2k cos 0 sin cp (B) 

The longitudinal elastic wave may be followed by a fast plastic wave (curves Aa and 
Bb in Fig. 4). As was shown before, Ull may vary in this wave without restrictions, 

The states represented in Fig. 4 by the point of the curve aAQBb, i.e. after the pass- 

age of the fast plastic and longitudinal elastic waves, may be traversed by a transverse 
elastic wave in which we reach the states represented by the elliptic arc ACB (7 

3 
‘I!? + 4 

3K 
3K + $, ‘11’ 

4P 
3K -j-4~ ‘ll 

2=JEL_ 

and the curve a’A’C’B’b’ symmetrical with respect to aACBb relative to tine straight 

line U12 =O. The formula (2.13) is obtained from the condition of plasticity with the 
help of (2.11) and (2.12), the curves uACBb and u’A’C’B’b’ are symmetric since in 
the transverse wave U1s is the only stress that varies and the initial and final points (e.g. 
u and a’) lie on the load surface. 

In what follows, the propagation will be limited to the slow plastic waves (the curves 

au, a’u’, bp and b’j3 in Fig. 4) in which, as was shown before, the value of 1 $2 I= 
= k 1s attained. The state of stress with arbitrary ulI and ~~2, [ U,Z 1 <k (the last 

inequality is dictated by the condition l/2 Uij’Uij’ = k2) can be reached from any pre- 

scribed initial state and this yields a solution to the problem on an oblique shock, i.e. 
to the problem in which a load Ull and U12 is applied to the surface z = 0 at the time 

t = 0 and remains constant henceforth. This problem was studied in [l, 2 and 71 under 
the condition $2 - us8 = 0 

To construct a solution to the problem on collapse of the discontinuity we must inspect 

the variation of pi from the given initial state $j and ZJ~ along each path on the 

%1* %-plane. Let the following relation hold for the waves propagating to the right 

1; + = %+ + f1 (%lt 012, Qj+), V*+ = U2+ + f2 ($19 ai29 S*j+) 1 (2.14) 

Then for the waves moving to the left we have 

u1 = u1 - fl (%I, 012, Sij ), v2 = U2 - f2 (%I9 u12r 4j I (2.15) 

The variation of velocity is not restricted in the fast plastic wave. and is restricted in 
the remaining waves. Hence 

]im fl (QII, $2, Sij) = - 00, 
0114m 

lim fl PII, QIP, Stj) = + 00 
a,,-.-al 

Then from (2.14) and (2.15) it follows that for any .Q and Ui on the Ull, u12-plane 
and for any value of $2 a point exists in which ul+ = u1 . These points form a curve 

r1 on the ($1, U12 -plane. 

l ) If the initial state Q lies on the load surface, it is represented by one of the points 
A, A’, B, B’ lying on the corresponding ellipse. 
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In certain cases (e.g. when the initial discontinuity is sufficiently small and .$ as 
well as a; lie within the elastic region), a curve r2 also exists, intersecting l?i, on 
which VZ+ = v2 . The point P of intersection of ri and I’s gives a solution of the pro- 
blem of collapse of a discontinuity consisting of integral curves connecting, on the (Tit, 

Urs -plane the points (&, &) and (Q-, sla ) with P,and a contact (second) type dis- 
continuity discussed previously. The only quantities which undergo a jump are u2a and 

%8. 
The curves ri and 1 a need not intersect. The curve rz does not even always exist 

Since the variation of v2 in the elastic and plastic (fast and slow) waves is restricted, 

us+ and v2- do not comcide when 1 ~a+ - u2- 1 is sufficiently large. In this case we 
have, at the surface G = (I a contact aisconcmuity of the first type. The states of stress 

on the oii, oi2-plane at both sides of such a discontinuity are represented by the inter- 

sections of ri with CT,~ = k or with oi2 = - k. The condition sgn or2 = sgn fu,+-- 
- us-) enables us to choose this point unambiguously. Since ]i does not intersect 1‘2, 

the last sign along ri is retained. Connecting the selected point with the initial points 

by means of the integral curves, we obtain a solution to the problem of collapse of the 
initial discontinuity. 

The jump suffered by the value of the transverse velocity component is characteristic 
for the ideally plastic media, and the media with restricted work-hardening property. A 
situation discussed in p] is typical for the media with unrestricted work-hardening pro- 

perty. Numerical calculations in 121 indicate that in a slow plastic wave uiz - 00, oil- 
- cry2 + u and crll is restricted. (These conclusions could easily be reached in z qualira- 

tive manner, as one of the equations of the system becomes separated from the other 
equations just as in the example discussed previously). Estimating the terms of the char- 

acteristic equations we then find that C_ - o12 Choosing ola as the parameter of the 

simple wave we find from the equation of motion that in the slow wave CEv, I da,, = 
= -(poC 1-A - cola ana v, - 00 in the slow wave. Apparently in this case va can always 

be made continuous at the contact discontinuity. 

Thus we find that under the assumption made about the medium and the class of the 

problems considered, an arbitrary discontinuity decomposes into elastic shock waves, 

simple plastic waves and a contact type discontinuity. No discontinuities in the plastic 

region exist that would require additional conditions to be obtained. The fact that the 
simple plastic waves do not break up in the more general case discussed in Sect. 1 ena- 
bles one to conclude with sufficient confidence that in the present case the situation will 

remain exactly the same and the only discontinuities that need to be considered will be 
the elastic shock waves, the contact type discontinuities and discontinuities representing 

limiting cases of the simple waves propagating with constant speed. 

The author expresses his gratitude to A. G, Kulikovskii for valuable advice and to 
L. I. Sedov for useful discussions. 
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ASYMPTOTIC METHODS OF SOLVING NONLINEAR PARTIAL 

DIFFERENTIAL EQUATIONS 
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(Gor’kii) 
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The asymptotic method presented here for one-dimensional nonlinear dynamic 
systems described in terms of partial differential equations with a small parameter, 
uses a known solution of the unperturbed problem as the basis for constructing 

an approximate solution on the prescribed variable range, which will tend to its 

exact value when the small parameter tends to zero. The method is based essen- 
tially on varying the arbitrary constants entering the unperturbed solution and 

constructing, for the slowly varying functions of the coordinate and time thus cre- 
ated, a system of differential equations the form of which depends on the degree 

of approximation. These equations remain nonlinear in the partial derivatives 
thus retaining the specific character of the problem and are, at the same time, 
easier to analyze than the initial equations. 

The substantiation of the method is reduced to proving a theorem oncontinuous 
dependence of the solution of the system of partial differential equations on the 
variation of its right-hand sides, and the proof is given here for hyperbolic and 
symmetrical parabolic systems. 

The procedure considered here embraces, as its particular cases, the known 
asymptotic methods of the perturbation theory [l, 21 of the geometrical optics 
[3, 41 and the methods [5. S] related to the method for ordinary differential equ- 
ations which are almost linear p]. 

1, Let us consider a system of differential equations of the form 

N(U)~U~+n(U,5,t,X,‘6)Ux+B(u,2,t,X,~)= 


